3.23 \(\int \frac{(c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^2} \, dx\)

Optimal. Leaf size=85 \[ -\frac{c^3 \tanh ^{-1}(\sin (e+f x))}{a^2 f}+\frac{4 c^3 \tan (e+f x)}{3 a^2 f (\sec (e+f x)+1)}-\frac{8 c^3 \tan (e+f x)}{3 a^2 f (\sec (e+f x)+1)^2}+\frac{c^3 x}{a^2} \]

[Out]

(c^3*x)/a^2 - (c^3*ArcTanh[Sin[e + f*x]])/(a^2*f) - (8*c^3*Tan[e + f*x])/(3*a^2*f*(1 + Sec[e + f*x])^2) + (4*c
^3*Tan[e + f*x])/(3*a^2*f*(1 + Sec[e + f*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.330986, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 9, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.346, Rules used = {3903, 3777, 3919, 3794, 3796, 3797, 3799, 3998, 3770} \[ -\frac{c^3 \tanh ^{-1}(\sin (e+f x))}{a^2 f}+\frac{4 c^3 \tan (e+f x)}{3 a^2 f (\sec (e+f x)+1)}-\frac{8 c^3 \tan (e+f x)}{3 a^2 f (\sec (e+f x)+1)^2}+\frac{c^3 x}{a^2} \]

Antiderivative was successfully verified.

[In]

Int[(c - c*Sec[e + f*x])^3/(a + a*Sec[e + f*x])^2,x]

[Out]

(c^3*x)/a^2 - (c^3*ArcTanh[Sin[e + f*x]])/(a^2*f) - (8*c^3*Tan[e + f*x])/(3*a^2*f*(1 + Sec[e + f*x])^2) + (4*c
^3*Tan[e + f*x])/(3*a^2*f*(1 + Sec[e + f*x]))

Rule 3903

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Dis
t[c^n, Int[ExpandTrig[(1 + (d*csc[e + f*x])/c)^n, (a + b*csc[e + f*x])^m, x], x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] && ILtQ[n, 0] && LtQ[m + n, 2]

Rule 3777

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Simp[(Cot[c + d*x]*(a + b*Csc[c + d*x])^n)/(d*(
2*n + 1)), x] + Dist[1/(a^2*(2*n + 1)), Int[(a + b*Csc[c + d*x])^(n + 1)*(a*(2*n + 1) - b*(n + 1)*Csc[c + d*x]
), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]

Rule 3919

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(c*x)/a,
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3796

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*Cot[e + f*x]*(a
+ b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(m + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 3797

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(Cot[e + f*x]*(a
 + b*Csc[e + f*x])^m)/(f*(2*m + 1)), x] + Dist[m/(b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1),
 x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 3799

Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*Cot[e + f*x]*(
a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] - Dist[1/(a^2*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m
+ 1)*(a*m - b*(2*m + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)
]

Rule 3998

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x
_Symbol] :> Dist[B/b, Int[Csc[e + f*x], x], x] + Dist[(A*b - a*B)/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^2} \, dx &=\frac{\int \left (\frac{c^3}{(1+\sec (e+f x))^2}-\frac{3 c^3 \sec (e+f x)}{(1+\sec (e+f x))^2}+\frac{3 c^3 \sec ^2(e+f x)}{(1+\sec (e+f x))^2}-\frac{c^3 \sec ^3(e+f x)}{(1+\sec (e+f x))^2}\right ) \, dx}{a^2}\\ &=\frac{c^3 \int \frac{1}{(1+\sec (e+f x))^2} \, dx}{a^2}-\frac{c^3 \int \frac{\sec ^3(e+f x)}{(1+\sec (e+f x))^2} \, dx}{a^2}-\frac{\left (3 c^3\right ) \int \frac{\sec (e+f x)}{(1+\sec (e+f x))^2} \, dx}{a^2}+\frac{\left (3 c^3\right ) \int \frac{\sec ^2(e+f x)}{(1+\sec (e+f x))^2} \, dx}{a^2}\\ &=-\frac{8 c^3 \tan (e+f x)}{3 a^2 f (1+\sec (e+f x))^2}-\frac{c^3 \int \frac{-3+\sec (e+f x)}{1+\sec (e+f x)} \, dx}{3 a^2}-\frac{c^3 \int \frac{\sec (e+f x) (-2+3 \sec (e+f x))}{1+\sec (e+f x)} \, dx}{3 a^2}-\frac{c^3 \int \frac{\sec (e+f x)}{1+\sec (e+f x)} \, dx}{a^2}+\frac{\left (2 c^3\right ) \int \frac{\sec (e+f x)}{1+\sec (e+f x)} \, dx}{a^2}\\ &=\frac{c^3 x}{a^2}-\frac{8 c^3 \tan (e+f x)}{3 a^2 f (1+\sec (e+f x))^2}+\frac{c^3 \tan (e+f x)}{a^2 f (1+\sec (e+f x))}-\frac{c^3 \int \sec (e+f x) \, dx}{a^2}-\frac{\left (4 c^3\right ) \int \frac{\sec (e+f x)}{1+\sec (e+f x)} \, dx}{3 a^2}+\frac{\left (5 c^3\right ) \int \frac{\sec (e+f x)}{1+\sec (e+f x)} \, dx}{3 a^2}\\ &=\frac{c^3 x}{a^2}-\frac{c^3 \tanh ^{-1}(\sin (e+f x))}{a^2 f}-\frac{8 c^3 \tan (e+f x)}{3 a^2 f (1+\sec (e+f x))^2}+\frac{4 c^3 \tan (e+f x)}{3 a^2 f (1+\sec (e+f x))}\\ \end{align*}

Mathematica [B]  time = 1.09175, size = 216, normalized size = 2.54 \[ -\frac{c^3 (\cos (e+f x)-1)^3 \cot \left (\frac{1}{2} (e+f x)\right ) \csc ^2\left (\frac{1}{2} (e+f x)\right ) \left (4 \tan \left (\frac{e}{2}\right ) \cot \left (\frac{1}{2} (e+f x)\right ) \csc ^2\left (\frac{1}{2} (e+f x)\right )+4 \sec \left (\frac{e}{2}\right ) \sin \left (\frac{f x}{2}\right ) \csc ^3\left (\frac{1}{2} (e+f x)\right )+3 \cot ^3\left (\frac{1}{2} (e+f x)\right ) \left (\log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )+f x\right )-4 \sec \left (\frac{e}{2}\right ) \sin \left (\frac{f x}{2}\right ) \cot ^2\left (\frac{1}{2} (e+f x)\right ) \csc \left (\frac{1}{2} (e+f x)\right )\right )}{6 a^2 f (\cos (e+f x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(c - c*Sec[e + f*x])^3/(a + a*Sec[e + f*x])^2,x]

[Out]

-(c^3*(-1 + Cos[e + f*x])^3*Cot[(e + f*x)/2]*Csc[(e + f*x)/2]^2*(3*Cot[(e + f*x)/2]^3*(f*x + Log[Cos[(e + f*x)
/2] - Sin[(e + f*x)/2]] - Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]) - 4*Cot[(e + f*x)/2]^2*Csc[(e + f*x)/2]*Se
c[e/2]*Sin[(f*x)/2] + 4*Csc[(e + f*x)/2]^3*Sec[e/2]*Sin[(f*x)/2] + 4*Cot[(e + f*x)/2]*Csc[(e + f*x)/2]^2*Tan[e
/2]))/(6*a^2*f*(1 + Cos[e + f*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.086, size = 90, normalized size = 1.1 \begin{align*}{\frac{4\,{c}^{3}}{3\,f{a}^{2}} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) \right ) ^{3}}+2\,{\frac{{c}^{3}\arctan \left ( \tan \left ( 1/2\,fx+e/2 \right ) \right ) }{f{a}^{2}}}-{\frac{{c}^{3}}{f{a}^{2}}\ln \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) +1 \right ) }+{\frac{{c}^{3}}{f{a}^{2}}\ln \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sec(f*x+e))^3/(a+a*sec(f*x+e))^2,x)

[Out]

4/3/f*c^3/a^2*tan(1/2*f*x+1/2*e)^3+2/f*c^3/a^2*arctan(tan(1/2*f*x+1/2*e))-1/f*c^3/a^2*ln(tan(1/2*f*x+1/2*e)+1)
+1/f*c^3/a^2*ln(tan(1/2*f*x+1/2*e)-1)

________________________________________________________________________________________

Maxima [B]  time = 1.58067, size = 362, normalized size = 4.26 \begin{align*} \frac{c^{3}{\left (\frac{\frac{9 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac{\sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}}{a^{2}} - \frac{6 \, \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}{a^{2}} + \frac{6 \, \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}{a^{2}}\right )} - c^{3}{\left (\frac{\frac{9 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - \frac{\sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}}{a^{2}} - \frac{12 \, \arctan \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a^{2}}\right )} + \frac{3 \, c^{3}{\left (\frac{3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac{\sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )}}{a^{2}} - \frac{3 \, c^{3}{\left (\frac{3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - \frac{\sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )}}{a^{2}}}{6 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^3/(a+a*sec(f*x+e))^2,x, algorithm="maxima")

[Out]

1/6*(c^3*((9*sin(f*x + e)/(cos(f*x + e) + 1) + sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/a^2 - 6*log(sin(f*x + e)/(
cos(f*x + e) + 1) + 1)/a^2 + 6*log(sin(f*x + e)/(cos(f*x + e) + 1) - 1)/a^2) - c^3*((9*sin(f*x + e)/(cos(f*x +
 e) + 1) - sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/a^2 - 12*arctan(sin(f*x + e)/(cos(f*x + e) + 1))/a^2) + 3*c^3*
(3*sin(f*x + e)/(cos(f*x + e) + 1) + sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/a^2 - 3*c^3*(3*sin(f*x + e)/(cos(f*x
 + e) + 1) - sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/a^2)/f

________________________________________________________________________________________

Fricas [B]  time = 1.07578, size = 425, normalized size = 5. \begin{align*} \frac{6 \, c^{3} f x \cos \left (f x + e\right )^{2} + 12 \, c^{3} f x \cos \left (f x + e\right ) + 6 \, c^{3} f x - 3 \,{\left (c^{3} \cos \left (f x + e\right )^{2} + 2 \, c^{3} \cos \left (f x + e\right ) + c^{3}\right )} \log \left (\sin \left (f x + e\right ) + 1\right ) + 3 \,{\left (c^{3} \cos \left (f x + e\right )^{2} + 2 \, c^{3} \cos \left (f x + e\right ) + c^{3}\right )} \log \left (-\sin \left (f x + e\right ) + 1\right ) - 8 \,{\left (c^{3} \cos \left (f x + e\right ) - c^{3}\right )} \sin \left (f x + e\right )}{6 \,{\left (a^{2} f \cos \left (f x + e\right )^{2} + 2 \, a^{2} f \cos \left (f x + e\right ) + a^{2} f\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^3/(a+a*sec(f*x+e))^2,x, algorithm="fricas")

[Out]

1/6*(6*c^3*f*x*cos(f*x + e)^2 + 12*c^3*f*x*cos(f*x + e) + 6*c^3*f*x - 3*(c^3*cos(f*x + e)^2 + 2*c^3*cos(f*x +
e) + c^3)*log(sin(f*x + e) + 1) + 3*(c^3*cos(f*x + e)^2 + 2*c^3*cos(f*x + e) + c^3)*log(-sin(f*x + e) + 1) - 8
*(c^3*cos(f*x + e) - c^3)*sin(f*x + e))/(a^2*f*cos(f*x + e)^2 + 2*a^2*f*cos(f*x + e) + a^2*f)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \frac{c^{3} \left (\int \frac{3 \sec{\left (e + f x \right )}}{\sec ^{2}{\left (e + f x \right )} + 2 \sec{\left (e + f x \right )} + 1}\, dx + \int - \frac{3 \sec ^{2}{\left (e + f x \right )}}{\sec ^{2}{\left (e + f x \right )} + 2 \sec{\left (e + f x \right )} + 1}\, dx + \int \frac{\sec ^{3}{\left (e + f x \right )}}{\sec ^{2}{\left (e + f x \right )} + 2 \sec{\left (e + f x \right )} + 1}\, dx + \int - \frac{1}{\sec ^{2}{\left (e + f x \right )} + 2 \sec{\left (e + f x \right )} + 1}\, dx\right )}{a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))**3/(a+a*sec(f*x+e))**2,x)

[Out]

-c**3*(Integral(3*sec(e + f*x)/(sec(e + f*x)**2 + 2*sec(e + f*x) + 1), x) + Integral(-3*sec(e + f*x)**2/(sec(e
 + f*x)**2 + 2*sec(e + f*x) + 1), x) + Integral(sec(e + f*x)**3/(sec(e + f*x)**2 + 2*sec(e + f*x) + 1), x) + I
ntegral(-1/(sec(e + f*x)**2 + 2*sec(e + f*x) + 1), x))/a**2

________________________________________________________________________________________

Giac [A]  time = 1.33767, size = 113, normalized size = 1.33 \begin{align*} \frac{\frac{4 \, c^{3} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{3}}{a^{2}} + \frac{3 \,{\left (f x + e\right )} c^{3}}{a^{2}} - \frac{3 \, c^{3} \log \left ({\left | \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) + 1 \right |}\right )}{a^{2}} + \frac{3 \, c^{3} \log \left ({\left | \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) - 1 \right |}\right )}{a^{2}}}{3 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^3/(a+a*sec(f*x+e))^2,x, algorithm="giac")

[Out]

1/3*(4*c^3*tan(1/2*f*x + 1/2*e)^3/a^2 + 3*(f*x + e)*c^3/a^2 - 3*c^3*log(abs(tan(1/2*f*x + 1/2*e) + 1))/a^2 + 3
*c^3*log(abs(tan(1/2*f*x + 1/2*e) - 1))/a^2)/f